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The application of phase-retrieval algorithms to the reconstruction of the longitudinal bunch profile of

an electron bunch from the spectrum of the coherent transition radiation (CTR) it produces is considered.

The development of a new algorithm for this application, the Bubblewrap algorithm, is described. Tests

with synthetic data show successful reconstruction of the longitudinal profile of single and double electron

bunches, provided that the CTR spectrum is known over a sufficiently wide range. The application of the

Bubblewrap algorithm to the reconstruction of laser-accelerated electron bunch profiles from experimen-

tal data is demonstrated. The results are shown to be consistent with estimates of the bunch length

obtained by other methods.
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I. INTRODUCTION

When a charged particle crosses a boundary between
media of different dielectric indices it causes emission of
very broadband transition radiation [1]. This transition
radiation can be used to gain information about the longi-
tudinal and transverse profiles of particle beams, with
essentially no disruption to relativistic beam propagation.
Nondestructive diagnostics of particle beams—particularly
those which operate in a single-shot regime—are invalu-
able for understanding the operation of the accelerator and
for providing feedback to the accelerator control system.
An area of significant current interest is the development of
single-shot diagnostics for the femtosecond-duration elec-
tron bunches generated by laser-wakefield accelerators.
The physics of laser-wakefield acceleration ensures that
the accelerated bunches have a duration equal to a fraction
of the plasma period, i.e., of order 10 fs or less [2–4], which
is too short for established techniques, such as transverse-
deflecting structures [5,6]. Meanwhile, the potential appli-
cations of these bunches, for instance as drivers of compact
free-electron lasers [7], depend critically on the bunch
duration. It is therefore important to develop new diagnos-
tics for these ultrashort bunches.

The emission of incoherent transition radiation at a thin
screen placed in the path of a particle bunch can be used to
determine the transverse profile of the bunch [8,9].
Additionally, transition radiation emitted at wavelengths
longer than the bunch length exhibits a degree of coher-
ence, due to the fact that emission from different particles

occurs approximately in phase—this is so-called coherent
transition radiation (CTR). The onset of this coherence is
reflected in the transition radiation spectrum, with (coher-
ent) long-wavelength radiation being more intense than
(incoherent) short-wavelength radiation by a factor equal
to the number of particles emitting coherently. Ignoring
transverse effects, the spectral intensity of the emitted
radiation is proportional to the Fourier transform of the
longitudinal bunch profile,
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where U is the emitted energy, ! is the angular frequency,
� is the solid angle subtended at the observation screen,Ne

is the total number of electrons, and ~�kð!Þ ¼ F ½�kðtÞ� is
the Fourier transform of the longitudinal bunch profile
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is the Ginzburg-Frank formula for the spectral energy
emitted by a single particle with normalized velocity �� ¼
v=c as a function of emission angle �.
The spectrum of the radiation therefore contains infor-

mation on the longitudinal bunch profile. Measurements of
the autocorrelation of the CTR by scanning interferometers
have been used to estimate the bunch length at several
conventional accelerator facilities [10,11], and recently
Wesch et al. have described a single-shot, broadband mul-
tigrating spectrometer for measurement of the CTR spec-
trum in the ranges 5–44 �m and 45–435 �m [12].
Estimates of the duration of the electron bunches produced
by laser-driven plasma accelerators have been obtained
on the basis of the CTR spectrum by, among others,
Leemans et al. [2], Faure et al. [3], and Glinec et al. [4].
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More recently, Lundh et al. [13] carried out a measurement
of the CTR at multiple wavelengths that allowed the estab-
lishment of rough constraints on the longitudinal bunch
profile.

Direct reconstruction of the longitudinal profile �kðtÞ
from an inverse Fourier transform of the measured CTR
spectrum is not possible since: (i) a CTR measurement
only yields the amplitude of ~�kð!Þ, and not its phase; and

(ii) in practice the CTR spectrum can only be measured
over a limited range of !. In these circumstances an
estimate of the duration of the bunch can be obtained by
assuming a parametrized shape for the longitudinal profile
and fitting the CTR spectrum calculated from this to the
measured spectrum.

Alternatively, the longitudinal profile may be deduced
from a Kramers-Kronig analysis and by making the mini-
mum phase assumption, as first suggested by Lai and
Sievers [14,15] and subsequently used in the analysis of
many measurements [14–18]. The Kramers-Kronig
method suffers from several limitations. The method re-
quires the spectrum to be known for all frequencies, and
hence in practice it is necessary to extrapolate the spectrum
through spectral regions in which measurements are not
made, especially the region near zero frequency. Further,
without additional knowledge, or assumptions—such as a
parametrized longitudinal profile—only the so-called
minimal spectral phase can be retrieved [14,15].
However this may be insufficient, as in some (realistic)
circumstances additional phase contributions, known as
the Blaschke phase, can change the deduced longitudinal
profile significantly. Given these limitations it is interesting
to explore alternative methods for reconstructing the lon-
gitudinal profile from full or partial measurements of the
radiation spectrum.

Provided certain conditions are met, phase-retrieval al-
gorithms can find the inverse transform of j~�kð!Þj even in

the absence of phase information, and when the amplitude
is not known for all ! [19]. Algorithms of this type have
been employed for this purpose across many scientific
fields, such as reconstruction of crystal structure from
x-ray diffraction patterns [20], and determination of the
modes excited in a waveguide from measurements of the
diffraction of the emerging beam [21].

In this paper we consider, for the first time, the applica-
tion of phase-retrieval algorithms to deducing the longitu-
dinal bunch profile of a charged particle beam from
measurements of part of the CTR spectrum. The paper is
structured as follows. In Sec. II we provide a brief over-
view of phase-retrieval algorithms developed to date. In
Sec. III we present a new algorithm—which we call the
Bubblewrap algorithm—that is specifically targeted at lon-
gitudinal bunch profile reconstruction. In Sec. IV, we use
synthetic data to demonstrate the ability of the Bubblewrap
algorithm to reconstruct the bunch profiles for several
cases, and also outline its limitations. We then transition

to the real-world application of the Bubblewrap algorithm.
In Sec. V we describe a recent experiment where broad-
band single-shot measurements of CTR spectra emitted by
electron bunches from a laser-wakefield accelerator were
conducted. Finally, in Sec. VI we present the reconstruc-
tion of longitudinal electron bunch profiles through appli-
cation of the Bubblewrap algorithm to CTR spectra
obtained in this experiment, and compare the results with
fits to an assumed bunch profile.

II. PHASE-RETRIEVAL ALGORITHMS

Given the square modulus of the Fourier transform of a
signal, the missing phase information (and the signal itself)
can under certain circumstances be retrieved a posteriori.
This concept is underpinned by a note by Sayre [22], who
pointed out that a function with finite support is uniquely
defined by knowledge of its Fourier transform at a limited
number of points. In particular, a function with support in
real space over the range x 2 ½�a=2; a=2� is completely
specified by the values of its Fourier transform at the points
k ¼ 0;�2�=a;�4�=a; . . . . Hence, if the amplitude of the
transform is oversampled it is possible to use the additional
data to deduce the phase of the limited set of points
required for reconstruction of the function; in many experi-
ments the transform is indeed oversampled.
The first practical phase-retrieval algorithm was intro-

duced in 1972 by Gerchberg and Saxton [23], for the
purpose of reconstructing the 2D profile of an object
from its diffraction pattern. The Gerchberg-Saxton algo-
rithm (hereafter the GS algorithm) is iterative, as are all
known phase-retrieval algorithms.

A. Gerchberg-Saxton algorithm

We first present the Gerchberg-Saxton algorithm, as
its operation informs that of others discussed later. Our
treatment follows that of Fienup [19]. We introduce the
function fðxÞ that we would like to reconstruct from mea-
surements of the modulus of its Fourier transform,
jFðkÞj ¼ jF ½fðxÞ�j. The function gnðxÞ is our estimate of
fðxÞ at the nth iteration, and GnðkÞ is its Fourier transform.
Figure 1 illustrates the four-step iteration cycle.
The algorithm continually switches between Fourier

space and real space, and ensures that the candidate esti-
mate g matches the constraints present in each domain. In
the Fourier domain the only constraint is that the modulus
of G must equal the measured amplitude of the spectrum,
jFj. Since there is no phase information about F, the phase
of GnðkÞ, c nðkÞ, is retained. The modulus of G is set equal
to jFj only for the points for which measurements exist; for
other points the iterative estimate G is preserved.
According to the formalism utilized by Elser [24], this—
together with the forward and inverse Fourier transforms—
constitutes a ‘‘projection,’’ �mod of g onto the closest
function that satisfies the Fourier-space modulus con-
straint, g0 ¼ �mod½g�.
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The real-space constraints can be more diverse accord-
ing to the problem to be solved. It is common to require
fðxÞ to be zero outside a certain support. Additionally, as in
the present application, fðxÞmay be required to be real and
positive inside the support. We note that the requirement
for fðxÞ to be real is automatically satisfied for all iterates
gn if the initial estimate g0 is real valued. A set of points �
can therefore be defined for which g0kðxÞ violates the real-
space constraints, and for which the function’s value is set
to zero:

gkþ1ðxÞ ¼
�
g0kðxÞ; x =2 �;

0; x 2 �:
(3)

In Elser’s formalism, this constitutes the support projec-
tion, �supp.

The modifications to g and G described above are the
minimum changes to the functions that are required
to make them comply with the constraints in each
domain. As discussed by Fienup, each iteration reduces
the error in the estimate, where the error at the kth iteration
is defined as

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

jgkþ1ðxÞ � g0kðxÞj2
s

: (4)

The GS algorithm is therefore also known as the error-
reduction algorithm. However, although the error de-
creases at each iteration, the algorithm is prone to stagna-
tion. After a number of iterations convergence can become
very slow, and sometimes the candidate function can con-
verge towards a local minimum [19]. This is in part a
symptom of the fact that the algorithm has a tendency to
‘‘explore’’ a relatively small set of candidate functions
with respect to the starting point g0ðxÞ.

B. Hybrid input-output algorithm

As first described by Fienup [19], the Gerchberg-Saxton
algorithm can be enhanced in several ways. One of them
involves recognizing that gkðxÞ does not need to be the
current best estimate of fðxÞ, but can instead be considered
as the driving function for the next input, g0kðxÞ. In this

sense the left-hand side of the procedure in Fig. 1 need not
force gðxÞ to satisfy the actual real-space constraints, but
can instead be an arbitrary manipulation, such that the next
g0ðxÞ will be closer to convergence. This approach forms a
class of algorithms known as ‘‘input-output’’ algorithms.
Fienup compares several input-output algorithms, as

well as a number of others, against the Gerchberg-Saxton
algorithm. Empirically, the best-performing appears to be
the hybrid input-output (HIO) algorithm, in which the
input function gkþ1ðxÞ is obtained from the output g0kðxÞ via

gkþ1ðxÞ ¼
�g0kðxÞ; x =2 �;

gkðxÞ � �g0kðxÞ; x 2 �;
(5)

where � is a free parameter. Fienup’s numerical tests on
reconstruction of an object from a 2D diffraction pattern
indicate best performance for � � 1. The hybrid input-
output algorithm has been applied successfully for recon-
struction of object data from a range of diffraction patterns,
notably by Marchesini et al. [25].

C. Difference map algorithms

Elser showed [24,26] that the Gerchberg-Saxton algo-
rithm consists of alternating application of the projections
�mod and �supp, i.e. gk¼�mod��supp ...��mod��supp½g0�.
The same author has described another class of algorithms
which utilize difference maps to facilitate convergence to a
fixed point, i.e., a function f that remains unchanged under
either of the two projections. The optimum difference map
is found to be

gkþ1 ¼ gk þ �dmf�supp½ð1þ ��1
dmÞ�mod½gk� � ��1

dmgk�
� �mod½ð1� ��1

dmÞ�supp½gk� þ ��1
dmgk�g; (6)

where �dm is a free parameter. Elser selects �dm ¼ 1. We
note that the projection performed by the difference map
algorithm with �dm ¼ 1 is equivalent to the hybrid input-
output algorithm with � ¼ 1.

D. Choice of function support and initial estimate

The initial estimate, g0ðxÞ, is generally taken to be a
randomly generated real function—not necessarily com-
pliant with the support constraint—in order not to bias the
phase-retrieval algorithm towards a particular output. This
approach allows an algorithm to be run multiple times for
different initial g0 in order to obtain a set of outputs that
match all constraints, and to correspondingly verify the
uniqueness—or otherwise—of the reconstructed function.

satisfy
Fourier

constraints

satisfy
function

constraints

FIG. 1. Outline of the Gerchberg-Saxton phase-retrieval algo-
rithm. For further details on each step see the text. Dashed boxes
indicate the steps that form projections of a candidate function
onto the support constraints, �supp, and the Fourier-space modu-

lus constraints, �mod, respectively.
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On the other hand, an appropriate choice of support is
crucial to the successful execution of a phase-retrieval
algorithm. It has to be large enough to accommodate the
entire reconstructed function, while being sufficiently re-
strictive for quick convergence to an unambiguous target
function to occur. In particular, an excessively large sup-
port may yield significantly differing results for runs with
different starting points.

The support constraints can be chosen on the basis of
additional information: for example, in the case of x-ray
diffraction, a low-resolution image of the object obtained
using conventional optics or scanning electron tomography
can inform the choice of support. They can also be chosen
on the basis of physical considerations: e.g., the length of
an electron bunch from a laser-wakefield accelerator is
expected to be limited by the bubble size, or plasma
wavelength. In addition, the autocorrelation function of
the object can be used as an indication of the outer limits
of its extent for the purposes of reconstruction. Since,
by the Wiener-Khinchin theorem, the autocorrelation
fðxÞ ? fðxÞ ¼ F�1½jFj2�, this estimate of the support can
be calculated from the measured spectrum jFj2, provided
the spectrum is known over a sufficiently broad range of
frequencies. Marchesini et al. [25] give further details on
possible choices of support.

E. Adaptive support selection:
The Shrinkwrap algorithm

In light of the importance of the choice of function
support, a key recent development has been the suggestion
by Marchesini et al. to adaptively change the support
during the reconstruction process, shrinking it around sub-
sequent iterates of the candidate function [20]. In this
approach the initial support is obtained by applying a
threshold to the autocorrelation of the diffraction pattern
(or spectrum). The HIO algorithm is then applied for 20
iterations with � ¼ 0:9. At that point the candidate func-
tion is convolved with a Gaussian of rms�, and a threshold
is applied at 20% of its maximum in order to obtain a new
support. After another 20 iterations of the HIO algorithm
the support is recalculated again by the same means, and so
forth. The Gaussian used for blurring has an initial width of
� ¼ 3 pixels, and is decreased by 1% every 20 iterations
until it reaches 1.5 pixels. As a consequence, each time the
support is recalculated it follows the outline of the candi-
date function more and more closely. For this reason the
algorithm is known as the ‘‘Shrinkwrap’’ algorithm.

The Shrinkwrap algorithm has been applied successfully
to a range of diffraction-related problems, demonstrating
the possibility for successful reconstruction without
a priori information [20,27]. However, we found its
present form inadequate for the reconstruction of bunch
profiles from hypothetical or real CTR spectra. We believe
this to be due to the fundamentally different number of
dimensions: two in the case of diffraction data to which

Shrinkwrap was applied, and one in the case of transition
radiation data. In the following section we describe a new
algorithm that combines several of the concepts reviewed
here and is tailored to reconstruction of longitudinal bunch
shapes from CTR spectra.

III. AN ALGORITHM FOR RECONSTRUCTION OF
BUNCH PROFILES FROM CTR DATA

In order to select the most appropriate algorithm for
reconstructing longitudinal bunch profiles from CTR spec-
tra, the GS, HIO, and difference map algorithms were
applied to simulated and measured CTR spectra. For the
HIO and the difference map algorithms, a range of values
of � and �dm were trialled. Several approaches for adap-
tive support selection were also tested. Here we present the
results of this survey, and outline the approach that appears
to yield the best performance under a broad range of
circumstances.

A. Selection of algorithm

Preliminary tests were carried out with synthetic longi-
tudinal bunches with Gaussian profiles of rms length rang-
ing from 0.5 to 3 �m. The corresponding simulated
spectral data was truncated for wavelengths longer than
7 �m in order to emulate realistic reconstruction from
experimental data (see Sec. V). The GS algorithm was
found to perform well for a number of iterations, but it
tended to stagnate or produce incorrect reconstructions—
for example multiple bunches—whenever the support
allowed for such ambiguity.
The HIO algorithm, with � ¼ 1, was found to probe a

broader range of candidate functions. However, it also
tended to produce rather large changes in the candidate
function from one iteration to the next, even when the
function appeared to be close to a suitable solution. It
was found that a compromise could be reached by reducing
�, which correspondingly reduced the change in the can-
didate function at each iteration [cf. Eq. (5)]. Figure 2
illustrates the variation in the final error—as defined by
Eq. (4)—and the rms length of the reconstructed function
after 990 iterations of the HIO algorithm followed by ten
iterations of the GS algorithm, performed on input data
corresponding to the CTR spectrum generated by a single
Gaussian of rms length 2 �m, on a support of length
15 �m.
Ten reconstruction runs were carried out for each value

of �, which was varied between 0.1 and 1.2 in steps of 0.1.
For these conditions, the HIO algorithm appeared to per-
form best for � � 0:3–0:4. This difference in the optimum
value of � compared with the previously reported [19,25]
optimum value of � � 1 appears to be a reflection of the
difference between 1D and 2D reconstructions. It also
highlights the trade-off between rapid exploration of a
large range of functions achieved at larger values of �,
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and the ability to accurately converge on the target function
at lower values.

As reported by Fienup [19], we found that performing a
small number of iterations of the GS algorithm after a
sequence of HIO iterations helps minimize the error.
Application of the GS algorithm was particularly good at
eliminating nonzero values of the candidate function out-
side the support—i.e., forcing it to satisfy the support
constraint—without significantly affecting the values in-
side the support.

For the synthetic bunch profile chosen here, the recon-
structed function generally has an rms length somewhat
less than the original 2 �m due to the fact that we allowed
all spectral components with � > 7 �m to vary freely, as
would be the case when experimental data is unavailable
beyond 7 �m. Under ideal conditions, a Gaussian bunch of
rms length �z emits CTR with an intensity spectrum that
varies as expð�½!�z=c�2Þ, where ! ¼ 2�c=� is the an-
gular frequency. While high-frequency components of the
spectrum contain information about short-range longitudi-
nal structure in the bunch, in order to make an accurate

estimate of the overall bunch length it is necessary to have
spectral information at frequencies less than approximately
the rms width of the spectrum. Hence, accurate determi-
nation of the bunch length requires measurements of the
spectrum for frequencies ! & !c � c=�z or � * �c �
2��z. The reconstructions of synthetic data described
here and in Sec. IV confirm this requirement empirically.
Finally, we found that the difference map algorithm

suffered from large iteration-to-iteration changes similar
to those that impeded the HIO algorithm’s ability to con-
verge on a solution. This is natural, as the two algorithms
are equivalent for �dm ¼ � ¼ 1. For the HIO algorithm
this issue could be addressed by reducing �, yet for the
difference map algorithm it was found that varying the
parameter �dm altered the algorithm’s behavior [24], but
did not appear to improve its performance with respect to
several synthetic scenarios involving CTR data.
On the basis of this survey we selected the HIO algo-

rithm as the primary means of phase retrieval, noting the
benefit of applying the Gerchberg-Saxton algorithm at the
final stages of reconstruction.

B. Adaptive support selection

A suitable support is crucial for a successful reconstruc-
tion. We found that a Gaussian of rms length 1 �m is
reconstructed correctly after 990 iterations of the HIO
algorithm followed by ten iterations of the GS algorithm
in virtually every case on a support of length 10 �m, but
almost never on a support of length 15 �m, independent of
the value of �. Obtaining an initial support from the
spectrum’s autocorrelation function is not possible in the
present application since there is no knowledge of the long-
wavelength components. In addition, there is no suffi-
ciently accurate a priori knowledge of the approximate
bunch length; deducing a support on the basis of physical
considerations—such as setting the plasma wavelength as a
limit on the bunch length—is unlikely to be sufficiently
restrictive for robust reconstruction.
It therefore appears beneficial to calculate the support

adaptively during the reconstruction, as in the Shrinkwrap
algorithm. The approach to support selection used by the
Shrinkwrap algorithm, as described in Sec. II E, tends to lead
to reconstructed profiles that are consistently shorter than
the synthetic profiles used to generate input data. This is a
natural outcome of the algorithm’s tendency to restrict the
size of the support as much as possible. While this approach
may be valid for reconstructing the images of collections of
compact and possibly scattered objects, like those consid-
ered inRef. [20], it does not appear to be suitable for accurate
bunch profile reconstruction in one dimension.We therefore
modify the approach, as described below.

C. The Bubblewrap algorithm

In the original Shrinkwrap algorithm the threshold level
applied to the candidate function each time the support was

FIG. 2. Performance of the hybrid input-output algorithm for
different values of the parameter �, when reconstructing the
spectrum of a Gaussian of 2 �m rms length on a fixed support of
length 15 �m. The rms length of the reconstructed profiles is
�rec, while E1000 shows the reconstruction error after 1000
iterations, as defined by Eq. (4). The spectrum is truncated at
wavelengths above 7 �m, leading to consistent underestimates
of �z. Each reconstruction run consists of 990 iterations of the
HIO algorithm followed by ten iterations of the Gerchberg-
Saxton algorithm. Ten reconstructions were carried out for
each value of �.
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recalculated was fixed at 20% of the peak. In the case of
CTR data, a threshold at this level results in a support
that cannot accommodate any low-current tails in the
electron bunch profile, although these are likely to exist
in reality. We find that a suitable way to address this is by
starting at a high threshold level, which is subsequently
reduced at each recalculation of the support. This ensures
that the function reconstructed during the initial stages
of the phase-retrieval process is still as compact as pos-
sible, however during the latter stages more subtle details
are allowed to emerge near the edges. Furthermore,
we find it beneficial initially to run the HIO algorithm
with a high value of �—which allows a wider range of
candidate functions to be probed—but subsequently to
reduce � as the function converges towards a self-
consistent profile, thus preventing excessive changes of
the function.

In recognition of its relation to the Shrinkwrap algo-
rithm, we call this approach the Bubblewrap algorithm.
After trialling different combinations of parameters, the
following approach appears to yield good results for a
range of inputs.

(i) The initial support size is set to 20 �m. This can
shrink or grow during the process, so the initial value is not
crucial.

(ii) Between each recalculation of the support, the HIO
algorithm is run for 45 iterations, and the Gerchberg-
Saxton algorithm is run for five iterations. We will call
this set of 50 iterations an iteration cycle.

(iii) The reconstruction process is run for a total of 200
iteration cycles (10 000 iterations in total).

(iv) The parameter � for the HIO algorithm is initially
set equal to 1.0, and decreased by 1.5% after each iteration
cycle, reaching a final value of 0.05.

(v) The initial threshold for support recalculation is set
to 25%, and decreased by 2.5% (in relative terms) after
each iteration cycle, bringing it down to a final value of
0.16%. The threshold is applied with respect to the peak
value of the reconstructed function at the end of each
iteration cycle.

(vi) Before calculating the support the function is
smoothed by a Gaussian function of rms length �. The
parameter � is initially set equal to 3 data points, and is
decreased by 0.5% after each iteration cycle so that after
200 iteration cycles it reaches a final value of 1.1 data
points.

These parameters are not intended to be universally
applicable: some phase retrievals may require more iter-
ations, and some may reach the target function after much
fewer. However, they form a suitable starting point, and the
parameters can be adjusted in light of the algorithm’s
performance. The number of data points used in the recon-
structions presented here is 213 ¼ 8192, however a signifi-
cantly smaller number can be used without substantively
affecting the effectiveness of the phase-retrieval process.
This is discussed further in Sec. VI.

IV. RECONSTRUCTION OF PROFILES FROM
SYNTHETIC SPECTRAL DATA

The Bubblewrap algorithm was applied to several syn-
thetic spectra calculated from various assumed bunch
shapes. The synthetic spectra were truncated at wave-
lengths longer than 7 �m, corresponding to a frequency
of 2:7� 1014 rad s�1; the signal at frequencies below this
value was allowed to vary freely during the reconstruction.
Since phase retrieval cannot fix the absolute position or the
direction of the reconstructed function, in order to compare
the reconstructed profiles they were shifted so that their
peaks overlap, if necessary inverted, and rescaled to the
same peak value. Ten reconstructions were carried out for
each input spectrum, in order to ascertain the stability of
the reconstruction.
For single Gaussian bunch shapes, we found that the

lack of spectral information at long wavelengths impedes
the accurate reconstruction of longer bunch profiles, lead-
ing to underestimates of their length. However, even in
these cases the reconstructed bunch shape was still ap-
proximately Gaussian, occasionally with slight asymme-
tries. Table I summarizes the accuracy of reconstruction
for several sample cases. We see that for bunches of length
* 2 �m the deviation in reconstructed bunch length be-
comes significant. For the case of the 3 �m-rms profile, in
some cases the phase retrieval converges on a profile con-
taining a pair of peaks rather than a single one, as reflected
in the figures shown in the table. These findings are in
reasonable agreement with the prediction of Sec. III A that
accurate reconstruction of a bunch of length �z requires
spectral information at wavelengths above �c ¼ 2��z.
Figure 3 shows sample reconstructions of asymmetric

Gaussian profiles. Again, it is seen that the reconstruction
becomes inaccurate whenever important spectral compo-
nents of the original profile are left as free parameters
during the phase retrieval. Figures 4 and 5 show the re-
construction of double Gaussian bunches, in which the two
Gaussian profiles are either overlapping or separate. The
corresponding figure captions give more detail on the
reconstructed profiles.
A subset of the above reconstructions was also per-

formed after introducing Gaussian noise to the synthetic

TABLE I. Phase retrieval for synthetic Gaussian bunch data.
The given error margins are standard deviation over the ten
reconstructions (or subsets thereof, in the case of 3 �m).

Original �z (�m) Retrieved �z (�m)

0.5 0:500� 0:001
1.0 0:978� 0:004
1.5 1:414� 0:006
2.0 1:736� 0:019
3.0 2:066� 0:053 (7=10 cases),

4:369� 0:270 (3=10 cases)
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data, at levels of 10% and 20% rms. For the reconstruction
of regular Gaussian profiles, we found that noise intro-
duced a random uncertainty in the reconstructed bunch
lengths that is commensurate with, or less than, the applied
noise level. Notably, applying such nonsystematic high-
frequency noise in the Fourier domain results in the
anomalous reconstruction of bunch features at long dis-
tances from the main bunch in the real-space domain—
these can normally be disregarded on the basis of physical
considerations. In order for measurement errors to intro-
duce actual variations in the bunch shape—or the appear-
ance of features close to the main bunch—they would need
to be systematic, altering the actual shape of the recorded
spectrum over a range of frequencies. Such errors could
arise, for example, from a miscalibration of the detectors’
spectral response.

In two dimensions, phase retrieval on experimentally
recorded diffraction patterns (or other Fourier-domain
data) can often lead to demonstrably unique real-space
reconstructions. In general, this is not the case for phase
retrieval in 1D [28], although functions with disconnected
supports which satisfy a separation condition have been
shown to almost always have a unique solution [29].
Hence, in general for the 1D case there may be profiles
different from the reconstructed one that satisfy the same
support conditions and have the same Fourier amplitudes.
However, a number of indicators lead us to believe that the
profiles reconstructed using the algorithm presented here
are good approximations of the true inversions of the
measured spectra. First, we find that reconstructions start-
ing from different randomized seeds very often give simi-
lar reconstructed profiles. Second, these reconstructed

FIG. 3. Reconstruction of sample asymmetric bunch profiles. Initial profiles are shown as dashed gray lines in (a) and (c). The mean
of the reconstructed profiles—from ten reconstructions with randomized initial data—are shown as blue lines. The light blue shading
represents three-� deviation from the mean. Profile (a) is a combination of half Gaussians of rms lengths 0:5 �m (to the left of z ¼ 0)
and 1 �m (to the right); for profile (c) the lengths are correspondingly 1 �m and 2 �m. The spectral amplitudes corresponding to the
original and reconstructed profiles are shown in (b) and (d). Spectral data is withheld from the phase-retrieval algorithm for !<
2:7� 1014 rad s�1, which is the only region where discrepancies between the original and reconstructed spectra occur.
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profiles are reasonable from a physical standpoint. Third,
within a set parameter space tests with synthetic data give
accurate reconstructed results. In conclusion, while it may
be possible to find other reconstructions which are consis-
tent with the measured spectra, they are unlikely to be
realistic longitudinal bunch profiles.

V. MEASUREMENT OF CTR SPECTRA FROM
LASER-ACCELERATED ELECTRON BUNCHES

Experimental measurements of the spatial and spectral
characteristics of CTR emitted from laser-accelerated elec-
trons were carried out at the Max-Planck-Institut für
Quantenoptik (MPQ) in Garching, Germany. The ATLAS
Ti:sapphire laser system at MPQ delivered an on-target
laser energy of 1:5� 0:1 J within a FWHM pulse length of
28� 2 fs, focused to a waist of spot size of w0 ¼ 18:7�
1:2 �m. This gave a peak intensity of 5:9� 0:9�
1018 W cm�2, corresponding to a peak normalized vector
potential in vacuum of a0 ¼ 1:66� 0:13.

The plasma target in which acceleration took place was a
steady-state-flow gas cell, where the laser-plasma interac-
tion length could be set from 2 to 14 mm. The pressure of
the hydrogen gas in the cell was varied in the range
65–260 mbar, corresponding to plasma densities of
3:1–12:6� 1018 cm�3. The experimental setup is shown
schematically in Fig. 6.

Upon exiting the gas cell, the accelerated electron bunch
passed through a pair of 20 �m-thick steel tapes located
50 mm behind the gas cell exit. The first tape served to
block the laser beam, while the second tape was the source
of transition radiation. Ballistic longitudinal bunch expan-
sion over this short distance would be negligible. The
transverse extent of the beam was accounted for in the
spectrometer response function.

The transition radiation was reflected to one side by a
pellicle placed directly behind the tape drive, while the
electron bunch continued along the propagation axis of the

driving laser. We note that the tape and pellicle are both
opaque to the detected radiation and hence only transition
radiation from the rear of the second tape and the front of
the pellicle was detected. These two sources of radiation
may interfere, but since the distance between them is much
smaller than the CTR formation length, the two sources
will be close to being in phase over the range of angles and
wavelengths detected. As such modulation of the spectrum
or angular distribution of the detected transition radiation
by interference effects will be negligible. Further, full
Fourier optics source and transport calculations—to be
published in detail elsewhere—show that at the detector
the temporal and spatial overlap of these two sources of
radiation is small, and hence that interference effects are
weak.
The electron bunch was dispersed by a dipole magnet

spectrometer, and the charge and energy spectrum of the
bunch were recorded by means of detecting the fluores-
cence of an absolutely calibrated Lanex screen.
After reflection from the pellicle, the transition radiation

was collimated by an off-axis paraboloid of effective focal
length f ¼ 19 cm and an f number of f=3:75, correspond-
ing to an acceptance half angle of 133 mrad. Part of the
collimated radiation propagated through a 1 mm-thick
silicon wafer, and was reflected into a separate vacuum
chamber that housed the THz spectrometer. This spec-
trometer was based on a design employed for CTR mea-
surements at DESY, which is described in more detail by
Delsim-Hashemi [30]. It employs three gratings; the zeroth
order reflection from each is directed towards the next. The
first grating works as a low pass filter to avoid ambiguities
due to the overlap of different diffraction orders. The parts
of the spectrum dispersed by the second and third grating
are focused onto two pyroelectric detector arrays by
custom-made gold mirrors. Two grating configurations
were available, allowing measurements either in the range
1:7–7 �m or 5–25 �m. The raw detector signal was pro-
cessed and digitized as described in Ref. [30].
The first silicon wafer mentioned above directed part of

the radiation out of the vacuum chamber to a separate in-air
spectrometry setup. There, a lens of 60 cm focal length was
used to refocus the collimated transition radiation onto the
entrance slits of an imaging spectrometer (Oriel MS260)
and a near-infrared (NIR) spectrometer (Princeton
Instruments OMA-C) which employed a 1024� 256 sili-
con CCD chip and a 1024-element liquid nitrogen-cooled
InGaAs diode array, respectively. The former spectrome-
ter, hereafter referred to as the ‘‘visible’’ spectrometer, was
used for detection in the spectral range 421–1096 nm,
while the latter was used over three different ranges—
each spanning approximately 700 nm—at wavelengths
between 1033 and 2135 nm.
Since silicon has good reflectivity (* 0:3) over both the

visible and near-infrared, but only transmits wavelengths
longer than �1050 nm [31], a second silicon wafer served

lanex screenATLAS
Laser

double tape drive

gas cell

collimating OAP

electron spectrometer

outside
vacuum

transition
radiation

electron bunch

THz (pyro.)
spectrometer

Visible (Si)
spectrometer

NIR (InGaAs)
spectrometer

Si wafer

Si wafer

lens

FIG. 6. Experimental setup for characterization of coherent
transition radiation across the visible, near-infrared, and terahertz
ranges of the electromagnetic spectrum. See text for details.
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as the beam splitter between the visible and NIR spectrom-
eters, which measured the reflected and transmitted radia-
tion, respectively. By this token, a third silicon wafer
(not pictured in Fig. 6) was placed directly at the entrance
of the NIR spectrometer in order to eliminate stray laser
radiation that could give an erroneous signal from higher-
order reflection off the NIR spectrometer grating.

Through the use of an 1100 K tungsten blackbody source
and an Ocean Optics HL-2000-CAL calibration source, the
relative spectral responses of the visible and NIR spectrom-
eters were established. A 50 mW helium-neon laser placed
at the CTR source position was used with a chopper in order
to obtain an absolute sensitivity calibration for the visible
spectrometer, fromwhich an absolute calibration of theNIR
spectrometer could also be established.

Owing to lack of access to a well-characterized terahertz
source, the relative calibration of the THz spectrometer
was established according to the following procedure. The
frequency response of the detection system was decom-
posed into (a) a response arising from the wavelength
dependence of the grating reflectivity and the variation of
the grating dispersion across the detector array; and (b) the
response of each detector, accounting for the wavelength
dependence of the general pyroelectric response, as well as
variations between individual detectors. After accounting
for the former, the latter was determined as follows. For a
large number of shots where the laser and plasma parame-
ters were expected to generate only a single electron
bunch, as confirmed by the absence of obvious structure
in the optical and NIR spectra, it was assumed that a single

electron bunch was indeed generated. The Bubblewrap
algorithm was run for these shots, artificially restricting
the support to only the main current peak. This yielded a
smooth theoretical spectrum, which could be compared
against the measured THz spectrum. The mean of the
thus-obtained calibration factors was taken to obtain the
relative calibration for each detector. After the relative
response of the pyroelectric detectors had been obtained
in this way, the measured spectra were corrected for var-
iations in the pyroelectric response and in subsequent
Bubblewrap runs the spectrum was constrained to the
(corrected) measured spectrum.
Figure 7 illustrates how the overall relative calibration

is made up from these two contributions to the THz fre-
quency response. The absolute level of terahertz emission
was determined separately, from the spectral region where
the NIR and THz spectrometers overlapped.

VI. RECONSTRUCTION OF LONGITUDINAL
BUNCH PROFILES FROM MEASURED

CTR SPECTRA

TheBubblewrap algorithmwas applied to 816 experimen-
tal shots for which the 1:7–7 �m grating configuration was
used in the THz spectrometer and where good spectral data
was available through thevisible, near-infrared, and terahertz
regions. A further 538 shots were taken using the 5–25 �m
grating configuration, but the gap in the spectrum at 2–5 �m
precluded reliable application of the phase-retrieval algo-
rithm in those cases. Moreover, for this second data set, the
lack of an absolute calibration or an overlap region with the
calibrated NIR data made it difficult to determine the abso-
lute level of the THz signal for these long-wavelength
measurements. Nonetheless, measurements at the long-
wavelength configuration confirm a smooth spectrum with-
out structures for shots where a single electron bunch was
expected, such as those used for calibration.
In this section we present the results of the bunch profile

reconstruction from experimental CTR data for a small
number of representative cases. We employed a grid of
N ¼ 8192 points for the reconstruction (hereafter the
‘‘reconstruction grid’’), which in the Fourier domain spans
frequencies from !min ¼ 0 up to the highest measured
frequency !max ¼ 2�c=ð420 nmÞ ¼ 4:48� 1015 rad s�1.
This highest frequency also sets the data point spacing in
real space to be �z ¼ 210 nm, since by Nyquist’s theorem
!max ¼ 2�c=ð2�zÞ. The number of data points then sets
the total span of the reconstruction window to N�z �
1:72 mm. Since the total length of the electron bunch—
including secondary features—is unlikely to exceed
50 �m, the reconstruction is largely insensitive to N, as
long as N * 500. This was confirmed with synthetic data,
showing that equivalent reconstructions are obtained for
grids of 2048 and 8192 points.
Since the data from thevisible andNIR spectrometers has

a resolution that is higher than (or comparable to) the
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resolution of the reconstruction grid in Fourier space, linear
interpolation was used to populate the initial candidate
spectrum function, G0, with the amplitude data (i.e., the
square roots of themeasured intensities). On the other hand,
the terahertz data has a relatively low resolution, with fewer
data points than the reconstruction grid. In this case,G0 was
populated by taking each of the terahertz data points and
assigning its value to the nearest corresponding point on the
reconstruction grid. The remaining points on the grid were
left unassigned, and their valueswere free to vary during the
phase-retrieval process.

For each measured spectrum the Bubblewrap algorithm
was run 10 times using different random seeds, allowing
the stability of the reconstruction to be evaluated. This also
allowed a representative profile to be selected, as follows.
Starting with all ten reconstructed bunch shapes, the profile
that was most different from the others—in a least squares
sense—was removed from the set. This elimination was
repeated until only three profiles were left. Of these, the
profile most similar to the other two was selected as the
most representative of the set. This process appeared to
yield valid results for the majority of the data. Even in
cases where the reconstruction produced diverging results
for some initial seeds, eliminating the outliers ultimately
leads to the selection of a representative profile.

Figures 8–10 show the reconstructed profiles and mea-
sured and reconstructed CTR spectra for three representa-
tive single-shot measurements, together with a summary of
acceleration and the deduced electron bunch parameters.
The recorded images of the Lanex screen after the electron
spectrometer are also shown for reference. Note that panels
(ii) and (iii) in each figure show the results of all ten
separate reconstructions. Despite the random seeding, the
ultimate reconstructed profiles demonstrate a striking de-
gree of convergence. The presented figures illustrate the
general shape of the reconstructed profiles—occasionally
with secondary bunches, the interference of which causes
the observed oscillations in the CTR spectrum.

In order to establish the validity of the reconstructed
profiles we may compare the reconstructed bunch lengths
with the condition �z & �c=2�. The full width at half
maximum (FWHM) lengths of the reconstructed bunches
are shown in Figs. 8–10. Given that the FWHM of a

Gaussian profile of rms length �z is 2
ffiffiffiffiffiffiffiffiffiffi
2 ln2

p
�z, we see

that the deduced bunch lengths are well within the range
for which the reconstruction is expected to be reliable.

The validity of the bunch reconstructions can also be
checked by comparing the total energy contained in the
measured CTR spectra, against that expected based on the
reconstructed bunch profile. To do this, we can take as a
starting point the formula for total energy emitted by a
single electron, dU1=d! ¼ e2=ð2�2	0cÞ ln�, which is the
integral of the Ginzburg-Frank formula over all angles in
the limit � 	 1 (after Ref. [32]), where � is the Lorentz
factor of the electron. Taking into account the total number

of electrons, Ne, and the frequency-dependent longitudinal
coherence factor, ~�kð!Þ, the total coherent spectrum is

given by

dU

d!
¼ N2

e j~�kð!Þj2 e2

2�2	0c
hln�i; (7)

where hln�i ¼
R

dE ln�ðEÞðdQ=dEÞR
dEðdQ=dEÞ is the weighted average

of ln� over the electron energy spectrum, dQ=dE.
Because of the small variation in ln� ( � 6–7) over the
range of observed electron energies, the use of this
weighted average to represent the scaling with �—instead
of separately considering the emission from parts of the
electron bunch with different energies—should not lead to
a significant discrepancy.
The total number of electrons in the bunch can be found

by calibrating the response of the Lanex screen used to
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detect the dispersed electron energy spectrum [33] and
integrating over the measured energy spectrum. Now, the
total number of electrons in the bunch is also given by
integrating over the longitudinal bunch profile: Ne ¼
Ne

R
�kðzÞdz ¼ Ne ~�ð0Þ, where the right-hand side follows

from considering the Fourier transform of �kðzÞ at ! ¼ 0.
Normalizing the measured spectrum dU=d! by
N2

eðe2=2�2	0cÞhln�i yields j~�ð!Þj and hence j~�ð0Þj. If it
is found that j~�ð0Þj ¼ 1, then the total bunch charge de-
duced from the reconstructed bunch profile agrees with that
measured independently by the electron spectrometer.
Within a reasonable margin of error, we observe this to
be true in most cases, and certainly for those shown in
Figs. 8–10.

It is possible that not all electrons that emit transition
radiation reach the electron spectrometer. Additionally, the
absolute calibration of the THz detectors is only obtained

by cross calibration with the NIR spectrometer at a small
number of data points around 2 �m, and may be unreli-
able. Therefore, the above verification of reconstruction
validity should only be used as a rough guide. Nonetheless,
we find ~� to be close to 1 for a majority of the reconstructed
spectra. This suggests that most of the emitted radiation
was collected and the absolute calibration of the spectrom-
eters is approximately accurate.
As discussed in the Introduction, other methods exist for

deducing the longitudinal bunch profile from the measured
CTR spectrum. A rudimentary method of estimating the
bunch length involves assuming that the longitudinal bunch
profile is Gaussian and accordingly fitting the measured
spectrum to a Gaussian in Fourier space. Applying this
method to the available experimental data, we find that the
FWHM lengths of the bunch profiles deduced by the
Bubblewrap algorithm are almost universally in the range
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1:1� 0:1 times the FWHM lengths obtained by Gaussian
fitting. Such a small discrepancy gives further credibility to
the bunch profiles obtained by phase retrieval. The existence
of the discrepancy itself highlights the fact that the assump-
tion of a Gaussian profile is likely to limit the accuracy of
bunch length estimation by simple fitting, by, for example,
not accounting for additional bunches or asymmetry.

VII. CONCLUSIONS

We have considered the application of phase-retrieval
algorithms to reconstruction of the longitudinal bunch
profile of an electron bunch from measurements of the
coherent transition radiation spectrum it produces.
Several existing algorithms were investigated, though no
single one alone was found able to perform the reconstruc-
tion reliably for a sufficiently wide range of potential
scenarios. Based on a combination of these algorithms, a
new algorithm—the Bubblewrap algorithm—was devel-
oped for this application. Tests with synthetic data showed
that it was able to reconstruct the longitudinal profile of
single and double electron bunches, provided that the CTR
spectrum was known over a sufficiently wide range. The
algorithm was also applied to recently measured CTR
spectra generated by laser-accelerated electron bunches.
The retrieved longitudinal bunch profiles were found to be
realistic, and consistent with estimates of the bunch length
obtained by assuming a Gaussian profile. Retrieval of the
bunch profile takes a few seconds on a desktop personal
computer without code optimization, suggesting the pos-
sibility of implementing this as an online diagnostic for
accelerators operating at higher repetition rates.

We note that charged particle beams can generate radia-
tion by a wide range of phenomena—including coherent
transition radiation, coherent diffraction radiation, and
Smith-Purcell radiation—but direct reconstruction of the
longitudinal bunch shape is not possible since the spectral
phase is not known. The analysis of these spectra by phase-
retrieval algorithms offers one solution to this problem, and
has several advantages over other methods. The algorithms
are tolerant to gaps in the measured spectra, including
missing information about very low frequencies. They also
providemuchmore information about the bunch profile than
simpler methods, such as fitting the spectrum to that calcu-
lated for a parametrized bunch profile. For example, as long
as the spectrum is measured over a sufficiently wide range,
multiple bunches and bunch profile asymmetry can all be
detected. The additional information provided by phase-
retrieval algorithms, such as Bubblewrap, is likely therefore
to be useful in illuminating the physical processes occurring
during the bunch generation.
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[7] F. J. Grüner, S. Becker, U. Schramm, T. Eichner, M. Fuchs,
R. Weingartner, D. Habs, J. Meyer-Ter-Vehn, M. Geissler,
M. Ferrario, L. Serafini, B. van der Geer, H. Backe, W.
Lauth, and S. Reiche, Appl. Phys. B 86, 431 (2007).

[8] R. B. Fiorito and D.W. Rule, AIP Conf. Proc. 319, 21
(1994).

[9] G. P. Le Sage, T. E. Cowan, R. B. Fiorito, and D.W. Rule,
Phys. Rev. ST Accel. Beams 2, 122802 (1999).

[10] R. Lai, U. Happek, and A. J. Sievers, Phys. Rev. E 50,
R4294 (1994).

[11] A. Murokh, J. B. Rosenzweig, M. Hogan, H. Suk, G.
Travish, and U. Happek, Nucl. Instrum. Methods Phys.
Res., Sect. A 410, 452 (1998).

[12] S. Wesch, B. Schmidt, C. Behrens, H. Delsim-Hashemi,
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