News

  • July 31, 2017
    Ayman Alismail's work is featured in a 10-min video
    short report — An Yb:YAG, thin-disk amplifier developed by Ayman Alismail in the group of Dr. Hanieh Fattahi has been featured in a 10 min video by the Journal of Visualized Experiments. The video can be found here.
  • January 31, 2018
    Playing Billiards with a Laser Beam
    pressrelease — In their experiments, the group fired a powerful laser pulse at a micrometer-sized plastic sphere, blasting a bunch of protons from the target and accelerating them to velocities approaching the speed of light. The resulting velocity distribution is much narrower than that obtained when thin metal foils are used as targets.
  • February 23, 2018
    A Keen Sense for Molecules
    pressrelease — Infrared light has a keen sense for molecules. With the help of this light, researchers are able to go in search of the small particles which shape and determine our lives. The phenomenon, in which infrared light sets molecules in vibration, is pivotal in this search. Scientists are exploiting this phenomenon by using infrared light to analyze the molecular makeup of samples. In the hope that this analysis can become even more exact, the laser physicists from the Laboratory of Attosecond Physics (LAP) at the Ludwig-MaximiliansUniversität(LMU) Munich and the Max Planck Institute of Quantum Optics (MPQ) have developed …
  • March 19, 2018
    A new editor of Optics Letters
    short report — Dr. Tatiana Amotchkina has reached a strong international reputation in the research field of thin films and multilayer coatings allowing her to be invited to the Board of Editors of Optics Letters journal. Her significant record of publications in peer reviewed high quality journals, track records in the scientific carrier as well as excellent many-years reviewing activities form a good basis for the editorial responsibilities.
  • March 26, 2018
    Front Cover: Infrared Lasers
    short report — In article number 1700273, Jinwei Zhang and co‐workers investigate two different gain materials — Tm:YAG and Ho:YAG — in thin‐disk configuration. Using a 72‐pass pump cavity, thin‐disk lasers with high powers and optical‐to‐optical efficiencies at 2 µm are realized, paving the way for further scaling of power towards kW‐level based on thin‐disk technology. The image was made and processed by Thorsten Naeser, Dennis Luck, and Kilian Fritsch together with the authors of this manuscript.
  • April 12, 2018
    The Future of Ultrafast Solid-State Physics
    pressrelease — Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort light pulses in the infrared and visible regions of the spectrum. Extremely high-energy laser pulses, each lasting for a few femtoseconds, have made spectacular experiments possible, which have in turn yielded revolutionary insights. Above all, the growth in understanding of the interaction between light and electrons opens up entirely new prospects for the future of electronics. In the journal Review of Modern Physics (10 April 2018), Dr. Stanislav Kruchinin, …
  • April 23, 2018
    Molecules Brilliantly Illuminated
    pressrelease — Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of health. Researchers at the Laboratory for Attosecond Physics (LAP) – a joint venture between Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ) in Garching near Munich – want to use brilliant infrared light to study molecular disease markers in much greater detail, for example to facilitate early stage cancer diagnosis. The team has developed a powerful femtosecond light source which emits at wavelengths between 1.6 and 10.2 …